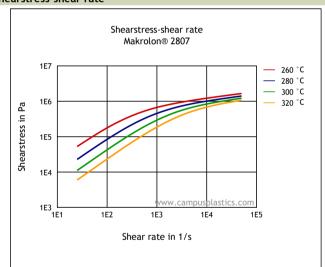
CAMPUS® Datasheet

Makrolon® 2807 - PC Bayer MaterialScience

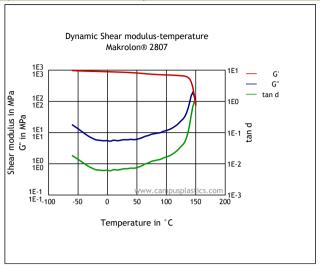
Product Texts

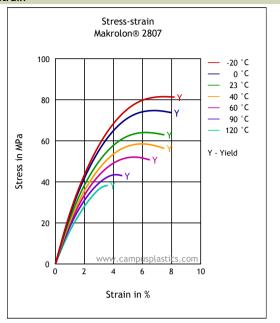
- MVR (300 °C/1.2 kg) 9.0 cm³/10 min
- general purpose
- medium viscosity
- UV stabilized
- easy release
- available in transparent, translucent and opaque colors

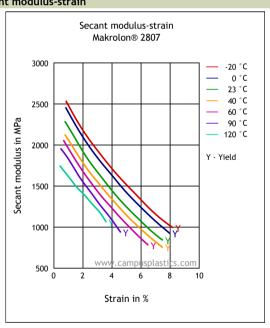
Rheological properties	Value	Unit	Test Standard
Melt volume-flow rate, MVR	9	cm ³ /10min	ISO 1133
Temperature	300	°C	ISO 1133
Load	1.2	kg	ISO 1133
Molding shrinkage, parallel	0.7	%	ISO 294-4, 2577
Molding shrinkage, normal	0.7	%	ISO 294-4, 2577
Mechanical properties	Value	Unit	Test Standard
Tensile Modulus	2400	MPa	ISO 527-1/-2
Yield stress	66	MPa	ISO 527-1/-2
Yield strain	6.1	%	ISO 527-1/-2
Nominal strain at break	>50	%	ISO 527-1/-2
Tensile creep modulus, 1h	2200	MPa	ISO 899-1
Tensile creep modulus, 1000h	1900	MPa	ISO 899-1
Charpy impact strength, +23°C	N	kJ/m²	ISO 179/1eU
Charpy impact strength, -30°C	N	kJ/m²	ISO 179/1eU
Puncture - maximum force, +23°C	5400	N	ISO 6603-2
Puncture - maximum force, -30°C	6300	N	ISO 6603-2
Puncture energy, +23°C	60	J	ISO 6603-2
Puncture energy, -30°C	65	J	ISO 6603-2
Thermal properties	Value	Unit	Test Standard
Glass transition temperature, 10°C/min	144	°C	ISO 11357-1/-2
Temp. of deflection under load, 1.80 MPa	124	°C	ISO 75-1/-2
Temp. of deflection under load, 0.45 MPa	136	°C	ISO 75-1/-2
Vicat softening temperature, 50°C/h 50N	143	°C	ISO 306
Coeff. of linear therm. expansion, parallel	65	E-6/K	ISO 11359-1/-2
Coeff. of linear therm. expansion, normal	65	E-6/K	ISO 11359-1/-2
Burning Behav. at thickness h	V-2	class	IEC 60695-11-10
Thickness tested	0.8	mm	IEC 60695-11-10
UL recognition	UL	-	-
Oxygen index	28	%	ISO 4589-1/-2
Electrical properties	Value	Unit	Test Standard
Relative permittivity, 100Hz	3.1	<u>-</u>	IEC 60250
Relative permittivity, 1MHz	3	-	IEC 60250
Dissipation factor, 100Hz	5	E-4	IEC 60250
Dissipation factor, 1MHz	90	E-4	IEC 60250
Volume resistivity	>1E13	Ohm*m	IEC 60093
Surface resistivity	>1E15	Ohm	IEC 60093

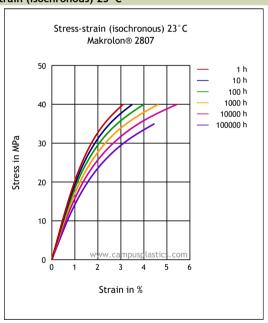

Comparative tracking index	250	-	IEC 60112
Other properties	Value	Unit	Test Standard
Water absorption	0.3	%	Sim. to ISO 62
Humidity absorption	0.12	%	Sim. to ISO 62
Density	1200	kg/m³	ISO 1183
Material specific properties	Value	Unit	Test Standard
Luminous transmittance	89	%	ISO 13468-1, -2
Rheological calculation properties	Value	Unit	Test Standard
Density of melt	1020	kg/m³	-
Thermal conductivity of melt	0.214	W/(m K)	-
Spec. heat capacity of melt	2100	J/(kg K)	-
Eff. thermal diffusivity	1E-7	m²/s	-
Ejection temperature	130	°C	-
Test specimen production	Value	Unit	Test Standard
Injection Molding, melt temperature	300	°C	ISO 294
Injection Molding, mold temperature	80	°C	ISO 10724
Injection Molding, injection velocity	200	mm/s	ISO 294

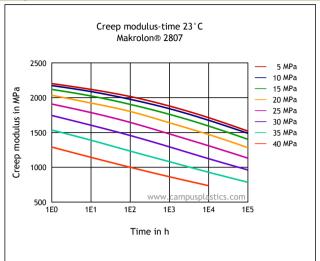
Diagrams

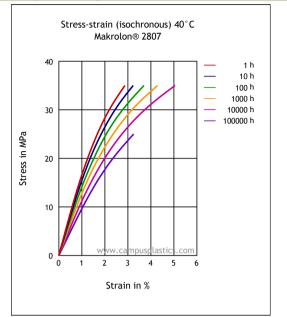

Viscosity-shear rate

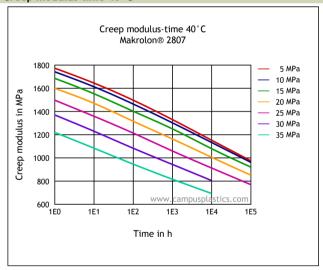

Shearstress-shear rate

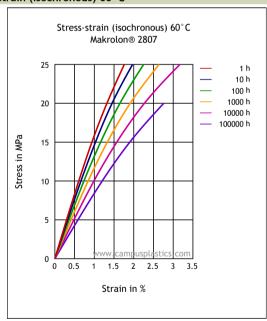

Dynamic Shear modulus-temperature

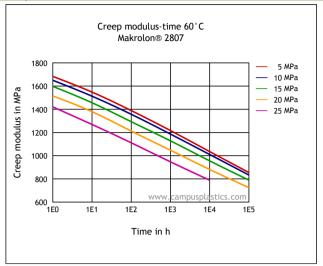

Stress-strain

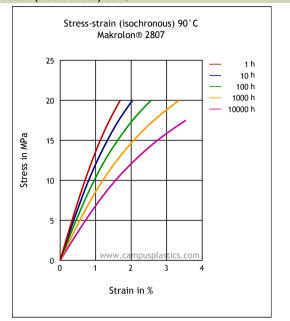

Secant modulus-strain


Stress-strain (isochronous) 23°C

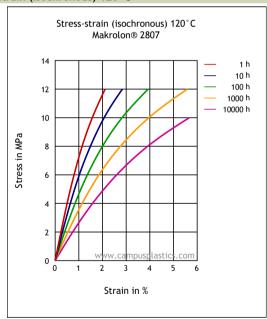

Creep modulus-time 23°C

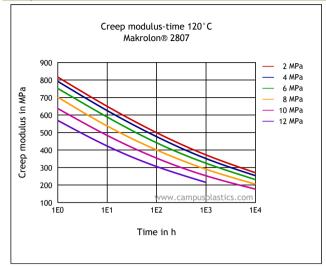

Stress-strain (isochronous) 40°C


Creep modulus-time 40°C


Stress-strain (isochronous) 60°C

Creep modulus-time 60°C


Stress-strain (isochronous) 90°C


Creep modulus-time 90°C


Stress-strain (isochronous) 120°C

Creep modulus-time 120°C

Specific volume-temperature (pvT)

Characteristics

Processing

Injection Molding

Delivery form

Pellets

Additives

Release agent

Special Characteristics

Light stabilized or stable to light, U.V. stabilized or stable to weather, Transparent

Regional Availability

North America, Europe, Asia Pacific, South and Central America, Near East/Africa

Other text information

Injection molding

PREPROCESSING

Max. Water content: 0.02 % Drying temperature: 120 $^{\circ}\text{C}$

Drying time:

Circulating air drying oven (50 % fresh air) 4-12 h Fresh air dryer (high speed dryer) 2-4 h

Dry air dryer 2-3 h PROCESSING

Melt temperature: 280 - 320 °C Mold temperature: 80 - 120 °C

Bayer MaterialScience AG

The manner in which you use and the purpose to which you put and utilize our products, technical assistance and information (whether verbal, written or by way of production evaluations), including any suggested formulations and recommendations, are beyond our control. Therefore, it is imperative that you test our products, technical assistance and information to determine to your own satisfaction whether our products, technical assistance and information are suitable for your intended uses and applications. This application-specific analysis must at least include testing to

determine suitability from a technical as well as health, safety, and environmental standpoint. Such testing has not necessarily been done by us. Unless we otherwise agree in writing, all products are sold strictly pursuant to the terms of our standard conditions of sale which are available upon request. All information and technical assistance is given without warranty or guarantee and is subject to change without notice. It is expressly understood and agreed that you assume and hereby expressly release us from all liability, in tort, contract or otherwise, incurred in connection with

the use of our products, technical assistance, and information. Any statement or recommendation not contained herein is unauthorized and shall not bind us. Nothing herein shall be construed as a recommendation to use any product in conflict with any claim of any patent relative to any material or its use. No license is implied or in fact granted under the claims of any patent.

BMS Medical Grades

BMS Products that are designated as "Medical Grade", e.g., plastics, sheets, and films, meet certain biocompatibility test requirements of ISO Standard 10993-1: "Biological Evaluation of Medical Devices" for the categories including: (1) skin contact, (2) up to 24 hours contact with circulating blood, tissue, bone, and dentin, (3) up to 30 days contact with mucosal membranes, compromised surfaces, and blood path, indirect. BMS Products designated as "Medical Grade" shall not be considered candidates for the following types of Medical Applications unless BMS explicitly agrees, in writing, to sell such products for such applications: (a) cosmetic, reconstructive, or reproductive implant applications; (b) any other bodily implant applications; (c) applications involving contact with or storage of human tissue. blood. or other bodily fluids. for greater than 30 days; or (d) applications having greater than 24 hours contact with circulating blood, tissue, bone and dentin. The biocompatibility testing referenced above cannot assure the biocompatibility of final or intermediate products made from BMS Products or the suitability of such products for their use in a Medical Application, i.e., the test data cannot be used to conclude that any medical devices manufactured from the BMS Products meet the necessary requirements of ISO Standard 10993-1. It is the sole responsibility of the manufacturer of final end-use product to conduct all necessary tests (including biocompatibility tests) and inspections and to evaluate the final product under actual end-use requirements. The designation as "Medical Grade" does not mean that BMS or anyone else has determined that the product is suitable for use in any particular Medical Application. BMS makes no representations regarding the suitability of a BMS Product for a particular Medical Application or final enduse product. A determination that the BMS Product is suitable for use in a particular Medical Application or final end-use product can only be made by the purchaser of the BMS product who utilizes it in a Medical Application and conducts all necessary testing and evaluation to support such a determination.

Appropriate Use of BMS Products in a Medical Application

BMS has not performed clinical medical studies concerning the use of BMS Products. Moreover, BMS has neither sought nor received approval from the United States Food and Drug Administration (FDA) or other competent authorities from other regions for the use of BMS Products in a Medical Application. BMS makes no representations or warranty regarding (and accepts no responsibility for determining) either: (a) the suitability of a BMS Product for a particular Medical Application or final end-use product or (b) the adequacy of any warning relating to a BMS Product or particular Medical Application or final end-use product. The suitability of BMS Products in a given end-use environment is dependent upon various conditions including, without limitation, chemical compatibility, method of manufacture, temperature, part design, sterilization method, residual stresses, and external loads. It is the sole responsibility of the manufacturer of the final end-use product to determine the suitability (including biocompatibility) of all raw materials and components, including any BMS Products, in order to ensure that the final product: - meets relevant biocompatibility requirements

and is otherwise safe for its end-use, - performs or functions as intended, - is suitable for its intended use, and - complies with all applicable FDA and other regulatory requirements. It also is the sole responsibility of the manufacturer of the final end-use product to conduct all necessary tests and inspections and to evaluate the final product under actual end-use requirements and to adequately advise and warn purchasers, users, and/or learned intermediaries (such as physicians) of pertinent risks and fulfill any postmarket surveillance obligations. Any decision regarding the

appropriateness of a particular medical product in a particular clinical or Medical Application should be based on the judgment of the manufacturer, seller, the competent authority, and the treating physician. BMS cannot weigh the benefits against the risks of a medical device and cannot offer a medical or legal judgment on the safety or efficacy of the use of a BMS Product in a specific Medical Application. Terms in capital letters as used herein shall have the same meaning as defined in the "GUIDANCE ON USE OF BAYER MATERIALSCIENCE PRODUCTS IN A MEDICAL

APPLICATION" which can be found under (see here). It is the customer's responsibility to thoroughly review the Guidance Document in detail and to diligently consider its content prior to any use of BMS Products in Medical Applications. For further information on our Medical Grades please see our brochure "Makrolon, Apec and Bayblend for medical devices".

www.bayerplastics.com